Multiple AI Agents: Creating Multi-Agent Workflows Using LangGraph and LangChain

Vijaykumar Kartha
14 min readMay 1, 2024

--

Self-Reflection

Self-reflecting AI agents use a generator to produce output and a reflector to review the generator’s work. The same Large Language Model (LLM) is used for both the generator and the reflector, but each has different prompts, resulting in a self-reflecting AI agent.

This method of using the same LLM in two different roles in a cyclical manner is facilitated by the LangGraph framework from LangChain.

Multi-agent Workflows

The LangGraph framework can also be used to create multi-agent workflows. Just like in the self-reflecting AI agent, the LLM can take on multiple roles, each acting as a different AI agent. This is the concept of multi-agents.

Multi-Agent

A multi-agent system involves connecting independent actors, each powered by a large language model, in a specific arrangement.

Each agent can have its own prompt, LLM, tools, and other custom code to collaborate with other agents. However, the same LLM can also assume different roles based on the prompts provided.

Using LangGraph for Multi-Agent Workflows

LangGraph is well-suited for creating multi-agent workflows because it allows two or more agents to be connected as a graph. Each agent is an independent actor, and the connections between agents are represented by edges. Each connecting edge can have a control condition that guides the flow of information from one agent to another. Each agent has a state that can be updated with information during each flow.

Collaborative Multi-Agents

Much like human collaboration, different AI agents in a collaborative multi-agent workflow communicate using a shared scratchpad of messages. This allows each agent to view other agents’ work and observe all the individual steps taken.

The various AI agents could be based on the same LLM but in different roles.

We’ll now create a multi-agent workflow for generating a chart of Malaysia’s GDP over the past five years.

This workflow would require a researcher to search the Internet and come up with the data of Malaysia’s GDP over the past five years, and a chart generator that uses Python code to generate the chart based on the data obtained by the researcher.

So, the agents are:

  1. Researcher — Uses an Internet search tool to research a question.
  2. Chart Generator — Creates a chart by executing code with the data provided by the researcher.

Blueprint for the Graph

We will construct a blueprint for a graph showing the agent nodes and the connections between them.

Information Flow In the Graph

A. The User sends the input to the Researcher.

B. The researcher sends the message to the router.

C. Based on the content of the message, the router either decides to call a tool, or sends a message to Chart Generator.

D. The tool does its work and sends the output to the Researcher. The Researcher may again call the tool or send a message to the Chart Generator. Accordingly, the router calls the tools or sends the message to the Chart Generator.

E. The Chart Generator sends the reply to the router which may call the tool or send the reply back to the researcher.

F. Finally, when either the Researcher or Chart Generator sends the message as Final Answer, then the router routes the Final Answer to the User.

Let’s now create a multi-agent workflow as per the above graph.

Install Packages

First, we need to install all the langchain packages.

pip install langchain langchain_openai langgraph langchain_core langsmith langchain_experimental

We also need to install some packages for storing data (pandas) and creating charts (matplotlib).

pip install pandas matplotlib

Import libraries

Next, we’ll import the libraries required for creating multi-agent workflows.

import json
from langchain_core.messages import (
AIMessage,
BaseMessage,
ChatMessage,
FunctionMessage,
HumanMessage,
)
from langchain.tools.render import format_tool_to_openai_function
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langgraph.graph import END, StateGraph
from langgraph.prebuilt.tool_executor import ToolExecutor, ToolInvocation

Create Tools

Tavily Search Tool

Next, we’ll set up the tools. We need an Internet Search Tool. We’ll use tavily for that.

import os
os.environ['TAVILY_API_KEY'] = "<Your Tavily API Key here>"
from langchain_core.tools import tool
from langchain_community.tools.tavily_search import TavilySearchResults
tavily_tool = TavilySearchResults(max_results=5)

Python Tool

We also need a tool to execute python code. We’ll use a tool named PythonREPL from langchain_experimental.utilities.

from langchain_experimental.utilities import PythonREPL
from typing import Annotated
repl = PythonREPL()
@tool
def python_repl(code: Annotated[str, "The python code to execute to generate your chart."]):
"""Use this to execute python code. If you want to see the output of a value, you should print it out with `print(...)`. This is visible to the user."""
try:
result = repl.run(code)
except BaseException as e:
return f"Failed to execute. Error: {repr(e)}"
return f"Succesfully executed:\\\\n`python\\\\\\\\n{code}\\\\\\\\n`\\\\nStdout: {result}"

We’ll put the tools into a list.

tools = [tavily_tool, python_repl]

Create State

Next, we’ll create the object for state. The state will be a list of messages that will be passed from one node to another.

import operator
from typing import Annotated, List, Sequence, Tuple, TypedDict, Union
from langchain.agents import create_openai_functions_agent
from langchain.tools.render import format_tool_to_openai_function
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_openai import ChatOpenAI
from typing_extensions import TypedDict
# This defines the object that is passed between each node
# in the graph. We will create different nodes for each agent and tool
class AgentState(TypedDict):
messages: Annotated[Sequence[BaseMessage], operator.add]
sender: str

Create Tool Node

We will use each tool based on the content of the message. We’ll create a tool_node function that will execute a tool based on the message.

tool_executor = ToolExecutor(tools)
def tool_node(state):
"""This runs tools in the graph
It takes in an agent action and calls that tool and returns the result."""
messages = state["messages"]
# Based on the continue condition
# we know the last message involves a function call
last_message = messages[-1]
# We construct an ToolInvocation from the function_call
tool_input = json.loads(
last_message.additional_kwargs["function_call"]["arguments"]
)
# We can pass single-arg inputs by value
if len(tool_input) == 1 and "__arg1" in tool_input:
tool_input = next(iter(tool_input.values()))
tool_name = last_message.additional_kwargs["function_call"]["name"]
action = ToolInvocation(
tool=tool_name,
tool_input=tool_input,
)
# We call the tool_executor and get back a response
response = tool_executor.invoke(action)
# We use the response to create a FunctionMessage
function_message = FunctionMessage(
content=f"{tool_name} response: {str(response)}", name=action.tool
)
# We return a list, because this will get added to the existing list
return {"messages": [function_message]}

Create the Router

Now that we’ve set up the tool node, let’s create the router that will decide where to send information based on the content of the message from state.

# Either agent can decide to end
def router(state):
# This is the router
messages = state["messages"]
last_message = messages[-1]
if "function_call" in last_message.additional_kwargs:
# The previus agent is invoking a tool
return "call_tool"
if "FINAL ANSWER" in last_message.content:
# Any agent decided the work is done
return "end"
return "continue"

Next, we set up the AI agents researcher and chart generator.

Create the LLM

First, let’s create the llm.

from langchain_openai import ChatOpenAI
llm = ChatOpenAI(api_key="<Your API Key here>")

Create Agents

First, we create a create_agent function that will create an agent and append system messages provided to the function. We will use this function later to create the researcher and chart generator.

import json
from langchain_core.messages import (
AIMessage,
BaseMessage,
ChatMessage,
FunctionMessage,
HumanMessage,
)
from langchain_core.utils.function_calling import convert_to_openai_function
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langgraph.graph import END, StateGraph
from langgraph.prebuilt.tool_executor import ToolExecutor, ToolInvocation
def create_agent(llm, tools, system_message: str):
"""Create an agent."""
functions = [convert_to_openai_function(t) for t in tools]
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful AI assistant, collaborating with other assistants."
" Use the provided tools to progress towards answering the question."
" If you are unable to fully answer, that's OK, another assistant with different tools "
" will help where you left off. Execute what you can to make progress."
" If you or any of the other assistants have the final answer or deliverable,"
" prefix your response with FINAL ANSWER so the team knows to stop."
" You have access to the following tools: {tool_names}.\\\\n{system_message}",
),
MessagesPlaceholder(variable_name="messages"),
]
)
prompt = prompt.partial(system_message=system_message)
prompt = prompt.partial(tool_names=", ".join([tool.name for tool in tools]))
return prompt | llm.bind_functions(functions)

Next, we create an agent_node function that will do the task of appending messages and the sender’s name. This will be used for routing purposes.

# Helper function to create a node for a given agent
def agent_node(state, agent, name):
result = agent.invoke(state)
# We convert the agent output into a format that is suitable to append to the global state
if isinstance(result, FunctionMessage):
pass
else:
result = HumanMessage(**result.dict(exclude={"type", "name"}), name=name)
return {
"messages": [result],
# Since we have a strict workflow, we can
# track the sender so we know who to pass to next.
"sender": name,
}

Now, we create the researcher agent and the chart generator agent.

research_agent= create_agent(
llm,
[tavily_tool],
system_message="You should provide accurate data for the chart generator to use.",
)
chart_agent= create_agent(
llm,
[python_repl],
system_message="Any charts you display will be visible by the user.",
)

Create Researcher Node and Chart Node From Agent Node

Then, we create the research_node function and the chart_node function from the research_agent and chart_agent functions. We use the functools library to create a function from another function agent_node.

import functools
research_node= functools.partial(agent_node, agent=research_agent, name="Researcher")
chart_node= functools.partial(agent_node, agent=chart_agent, name="Chart Generator")

Create Graph

We can now put all the nodes which includes the research_node, chart_node, and tool_node into a graph named workflow. We also add the conditional edges that will route messages as per the conditions fulfilled. We finally set the Researcher node to be the entry point. So, the user input will go first to the researcher. At the end, we compile the graph.

workflow= StateGraph(AgentState)
workflow.add_node("Researcher", research_node)
workflow.add_node("Chart Generator", chart_node)
workflow.add_node("call_tool", tool_node)
workflow.add_conditional_edges(
"Researcher",
router,
{"continue": "Chart Generator", "call_tool": "call_tool", "end": END},
)
workflow.add_conditional_edges(
"Chart Generator",
router,
{"continue": "Researcher", "call_tool": "call_tool", "end": END},
)
workflow.add_conditional_edges(
"call_tool",
# Each agent node updates the 'sender' field# the tool calling node does not, meaning
# this edge will route back to the original agent# who invoked the tool
lambda x: x["sender"],
{
"Researcher": "Researcher",
"Chart Generator": "Chart Generator",
},
)
workflow.set_entry_point("Researcher")
graph= workflow.compile()

Invoking the Multi-Agent Workflows

We are now ready to invoke the multi-agent workflow.

for s in graph.stream(
{
"messages": [
HumanMessage(
content="Fetch the Malaysia's GDP over the past 5 years,"
" then draw a line graph of it."
" Once you code it up, finish."
)
],
},
# Maximum number of steps to take in the graph
{"recursion_limit": 150},
):
print(s)
print("----")

The output is:

{'Researcher': {'messages': [HumanMessage(content='', additional_kwargs={'function_call': {'arguments': '{"query":"Malaysia GDP by year"}', 'name': 'tavily_search_results_json'}}, response_metadata={'token_usage': {'completion_tokens': 22, 'prompt_tokens': 221, 'total_tokens': 243}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'function_call', 'logprobs': None}, name='Researcher', id='run-313ac64c-fed0-4505-b00d-715c7ff0aa59-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}
----
{'call_tool': {'messages': [FunctionMessage(content="tavily_search_results_json response: [{'url': '<https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=MY>', 'content': 'GDP growth (annual %) - Malaysia from The World Bank: Data.'}, {'url': '<https://tradingeconomics.com/malaysia/gdp>', 'content': 'GDP in Malaysia averaged 109.79 USD Billion from 1960 until 2022, reaching an all time high of 407.03 USD Billion in 2022 and a record low of 1.90 USD Billion\\\\xa0...'}, {'url': '<https://www.macrotrends.net/global-metrics/countries/MYS/malaysia/gdp-gross-domestic-product>', 'content': 'Malaysia gdp for 2019 was $365.18B, a 1.78% increase from 2018. Download Historical Data Save as Image\\\\xa0...'}, {'url': '<https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=MY>', 'content': '1960 1980 2000 2020 0.00 225b 450b Malaysia. 1960 - 2022. 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007\\\\xa0...'}, {'url': '<https://www.worldometers.info/gdp/malaysia-gdp/>', 'content': 'Nominal (current) Gross Domestic Product (GDP) of Malaysia is $406,306,000,000 (USD) as of 2022. · Real GDP (constant, inflation adjusted) of Malaysia reached\\\\xa0...'}]", name='tavily_search_results_json')]}}
----
{'Researcher': {'messages': [HumanMessage(content='', additional_kwargs={'function_call': {'arguments': '{"query":"Malaysia GDP historical data"}', 'name': 'tavily_search_results_json'}}, response_metadata={'token_usage': {'completion_tokens': 22, 'prompt_tokens': 632, 'total_tokens': 654}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'function_call', 'logprobs': None}, name='Researcher', id='run-442c7d99-8b3c-4a32-99ec-e0739ac059dd-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}
----
{'call_tool': {'messages': [FunctionMessage(content='tavily_search_results_json response: [{\\'url\\': \\'<https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=MY&view=chart\\>', \\'content\\': \\'GDP growth (annual %) - Malaysia. World Bank national accounts data, and OECD National Accounts data files. License : CC BY-4.0. LineBarMap. Also Show Share Details. Label. 1961 - 2022.\\'}, {\\'url\\': \\'<https://tradingeconomics.com/malaysia/gdp\\>', \\'content\\': \\'The Gross Domestic Product (GDP) in Malaysia was worth 407.03 billion US dollars in 2022, according to official data from the World Bank. The GDP value of Malaysia represents 0.17 percent of the world economy. This page provides - Malaysia GDP - actual values, historical data, forecast, chart, statistics, economic calendar and news.\\'}, {\\'url\\': \\'<https://www.macrotrends.net/global-metrics/countries/MYS/malaysia/gdp-growth-rate\\>', \\'content\\': \\'Malaysia gdp growth rate for 2022 was 8.65%, a 5.35% increase from 2021. Malaysia gdp growth rate for 2021 was 3.30%, a 8.75% increase from 2020. Malaysia gdp growth rate for 2020 was -5.46%, a 9.87% decline from 2019. Malaysia gdp growth rate for 2019 was 4.41%, a 0.43% decline from 2018. Download Historical Data. Save as Image.\\'}, {\\'url\\': \\'<https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=MY&view=chart\\>', \\'content\\': \\'All Countries and Economies. Country. Most Recent Year. Most Recent Value(Millions) GDP (current US$) - Malaysia from The World Bank: Data.\\'}, {\\'url\\': \\'<https://www.macrotrends.net/global-metrics/countries/MYS/malaysia/gdp-gross-domestic-product\\>', \\'content\\': "Malaysia gdp for 2022 was $407.03B, a 8.88% increase from 2021. Malaysia gdp for 2021 was $373.83B, a 10.78% increase from 2020. Malaysia gdp for 2020 was $337.46B, a 7.59% decline from 2019. Malaysia gdp for 2019 was $365.18B, a 1.78% increase from 2018. GDP at purchaser\\'s prices is the sum of gross value added by all resident producers in the ..."}]', name='tavily_search_results_json')]}}
----
{'Researcher': {'messages': [HumanMessage(content="Based on the search results, I found the GDP data for Malaysia for the past 5 years as follows:\\n\\n- 2018: $365.18 billion\\n- 2019: $337.46 billion\\n- 2020: $373.83 billion\\n- 2021: $407.03 billion\\n- 2022: $407.03 billion\\n\\nNow, I will proceed to create a line graph to visualize this data.\\nI will now generate a line graph to visualize Malaysia's GDP over the past 5 years.", response_metadata={'token_usage': {'completion_tokens': 113, 'prompt_tokens': 1210, 'total_tokens': 1323}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Researcher', id='run-e498d73b-c688-4e38-aa9b-b4cfa39c34c7-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}
----
{'Chart Generator': {'messages': [HumanMessage(content='', additional_kwargs={'function_call': {'arguments': '{"code":"import matplotlib.pyplot as plt\\\\n\\\\ndata = {\\\\n \\'Year\\': [2018, 2019, 2020, 2021, 2022],\\\\n \\'GDP (in billion USD)\\': [365.18, 337.46, 373.83, 407.03, 407.03]\\\\n}\\\\n\\\\nplt.figure(figsize=(10, 6))\\\\nplt.plot(data[\\'Year\\'], data[\\'GDP (in billion USD)\\'], marker=\\'o\\', color=\\'b\\', linestyle=\\'-\\', linewidth=2)\\\\nplt.title(\\'Malaysia GDP Over the Past 5 Years\\')\\\\nplt.xlabel(\\'Year\\')\\\\nplt.ylabel(\\'GDP (in billion USD)\\')\\\\nplt.grid(True)\\\\nplt.show()"}', 'name': 'python_repl'}}, response_metadata={'token_usage': {'completion_tokens': 175, 'prompt_tokens': 1338, 'total_tokens': 1513}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'function_call', 'logprobs': None}, name='Chart Generator', id='run-11c4756f-097b-4733-8ecf-6091f5be5bd4-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Chart Generator'}}
----
{'call_tool': {'messages': [FunctionMessage(content="python_repl response: Succesfully executed:\\\\n`python\\\\\\\\nimport matplotlib.pyplot as plt\\n\\ndata = {\\n    'Year': [2018, 2019, 2020, 2021, 2022],\\n    'GDP (in billion USD)': [365.18, 337.46, 373.83, 407.03, 407.03]\\n}\\n\\nplt.figure(figsize=(10, 6))\\nplt.plot(data['Year'], data['GDP (in billion USD)'], marker='o', color='b', linestyle='-', linewidth=2)\\nplt.title('Malaysia GDP Over the Past 5 Years')\\nplt.xlabel('Year')\\nplt.ylabel('GDP (in billion USD)')\\nplt.grid(True)\\nplt.show()\\\\\\\\n`\\\\nStdout: ", name='python_repl')]}}
----
{'Chart Generator': {'messages': [HumanMessage(content="The line graph showing Malaysia's GDP over the past 5 years has been successfully generated. The graph displays the GDP (in billion USD) on the y-axis and the years from 2018 to 2022 on the x-axis. The GDP values are plotted as points connected by lines.\\n\\nIs there anything else you would like to analyze or any other assistance needed?", response_metadata={'token_usage': {'completion_tokens': 75, 'prompt_tokens': 1514, 'total_tokens': 1589}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Chart Generator', id='run-a6d15c89-6cb8-4f98-9cbb-67bb92214dc5-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Chart Generator'}}
----
{'Researcher': {'messages': [HumanMessage(content="I have successfully generated the line graph showing Malaysia's GDP over the past 5 years. If you have any more data to analyze or need further assistance, feel free to let me know!", response_metadata={'token_usage': {'completion_tokens': 39, 'prompt_tokens': 1579, 'total_tokens': 1618}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Researcher', id='run-9c1709e6-f6ee-4a8c-b0ae-f363d65a5a2f-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}
----
{'Chart Generator': {'messages': [HumanMessage(content="Great! If you have any more data to analyze or any other tasks you'd like assistance with, feel free to ask. I'm here to help!", response_metadata={'token_usage': {'completion_tokens': 32, 'prompt_tokens': 1634, 'total_tokens': 1666}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Chart Generator', id='run-1f869abb-930c-4b19-ab7e-c068a407f134-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Chart Generator'}}
----
{'Researcher': {'messages': [HumanMessage(content="I'm glad the line graph for Malaysia's GDP over the past 5 years was successfully generated. If you have any more data to analyze or any other tasks you'd like assistance with, feel free to ask. I'm here to help!", response_metadata={'token_usage': {'completion_tokens': 50, 'prompt_tokens': 1656, 'total_tokens': 1706}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Researcher', id='run-4c614614-5fc6-4d6b-abd8-5b1b85607f5a-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}
----
{'Chart Generator': {'messages': [HumanMessage(content='Thank you! If you have any more data to analyze or if you need assistance with any other tasks in the future, feel free to reach out. Have a great day!', response_metadata={'token_usage': {'completion_tokens': 36, 'prompt_tokens': 1722, 'total_tokens': 1758}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Chart Generator', id='run-659e7259-1906-4c07-8bb5-53c8d6ac7dd2-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Chart Generator'}}
----
{'Researcher': {'messages': [HumanMessage(content='Thank you! If you have any more data to analyze or if you need assistance with any other tasks in the future, feel free to reach out. Have a great day!', response_metadata={'token_usage': {'completion_tokens': 36, 'prompt_tokens': 1748, 'total_tokens': 1784}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Researcher', id='run-f87114d6-08aa-4a54-8490-1a1145a30263-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}
----
{'Chart Generator': {'messages': [HumanMessage(content='Great collaboration! If you have any more questions or need assistance in the future, feel free to ask. Have a wonderful day!', response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 1800, 'total_tokens': 1827}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Chart Generator', id='run-b12ec2b6-61bb-485c-81cf-279ade302e02-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Chart Generator'}}
----
{'Researcher': {'messages': [HumanMessage(content="Thank you! It was a pleasure collaborating with you. If you have any more questions or need assistance in the future, don't hesitate to ask. Have a wonderful day!", response_metadata={'token_usage': {'completion_tokens': 36, 'prompt_tokens': 1817, 'total_tokens': 1853}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Researcher', id='run-3c7cf207-ce49-416f-bb02-81a2a3410d5a-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}
----
{'Chart Generator': {'messages': [HumanMessage(content='It was a pleasure collaborating with you! If you have any more questions or need assistance in the future, feel free to reach out. Have a great day!', response_metadata={'token_usage': {'completion_tokens': 33, 'prompt_tokens': 1869, 'total_tokens': 1902}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Chart Generator', id='run-1d5d0ed0-c20a-4745-a16f-6adcaa8c2c81-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Chart Generator'}}
----
{'Researcher': {'messages': [HumanMessage(content='Likewise! If you ever have more questions or need help in the future, feel free to ask. Have a fantastic day!', response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 1892, 'total_tokens': 1919}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Researcher', id='run-bb88218f-ab2f-4ee5-b381-d75e1bd1d1cf-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}
----
{'Chart Generator': {'messages': [HumanMessage(content='Likewise! If you ever have more questions or need help in the future, feel free to ask. Have a fantastic day!', response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 1935, 'total_tokens': 1962}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Chart Generator', id='run-50293d69-34ff-455d-8b34-3a20a0a1bb91-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Chart Generator'}}
----
{'Researcher': {'messages': [HumanMessage(content="I'm glad we were able to collaborate effectively! If you have any more questions or need assistance in the future, feel free to reach out. Have a wonderful day!", response_metadata={'token_usage': {'completion_tokens': 35, 'prompt_tokens': 1952, 'total_tokens': 1987}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Researcher', id='run-67208ed1-0d31-4b43-b2e8-92619b806deb-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}
{'Researcher': {'messages': [HumanMessage(content="Thank you! It was a pleasure collaborating with you. If you have any more questions or need assistance in the future, don't hesitate to ask. Have a wonderful day!", response_metadata={'token_usage': {'completion_tokens': 36, 'prompt_tokens': 2087, 'total_tokens': 2123}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Researcher', id='run-bc8186f2-1f7e-477e-b1ff-0020c7171aa3-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Researcher'}}
----
{'Chart Generator': {'messages': [HumanMessage(content='FINAL ANSWER', response_metadata={'token_usage': {'completion_tokens': 4, 'prompt_tokens': 2139, 'total_tokens': 2143}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, name='Chart Generator', id='run-45177a17-7ae8-43b0-b73e-f9d3d5c5d456-0', tool_calls=[], invalid_tool_calls=[])], 'sender': 'Chart Generator'}

Congratulations! You have create a multi-agent workflow. Now, you are on the way to create multiple AI agents working together to achieve complex tasks.

Previous Articles:

Beginner’s Guide to LangChain

Beginner’s Guide To Retrieval Chain From LangChain

Beginner’s Guide to Conversational Retrieval Chain From LangChain

Beginner’s Guide to Creating AI Agents with LangChain

The Fascinating Mind of an AI Agent

Self-Reflecting AI Agents Using LangChain

--

--